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The fundamental design for a gas-cooled reactor relies on the safe behavior of the coated particle fuel. The
coating layers surrounding the fuel kernels in these spherical particles, termed the TRISO coating, act as a
pressure vessel that retains fission products. The quality of the fuel is reflected in the number of particle
failures that occur during reactor operation, where failed particles become a source for fission products
that can then diffuse through the fuel element. The failure probability for any batch of particles, which
has traditionally been calculated using the Monte Carlo method, depends on statistical variations in
design parameters and on variations in the strengths of coating layers among particles in the batch.
An alternative approach to calculating failure probabilities is developed herein that uses direct numerical
integration of a failure probability integral. Because this is a multiple integral where the statistically vary-
ing parameters become integration variables, a fast numerical integration approach is also developed. In
sample cases analyzed involving multiple failure mechanisms, results from the integration methods
agree closely with Monte Carlo results. Additionally, the fast integration approach, particularly, is shown
to significantly improve efficiency of failure probability calculations. These integration methods have
been implemented in the PARFUME fuel performance code along with the Monte Carlo method, where
each serves to verify accuracy of the others.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The success of gas-cooled reactors depends largely upon the
safety and quality of the coated particle fuel. The coating layers
of a particle, which surround the fuel and buffer, consist of an inner
pyrolytic carbon (IPyC) layer, a silicon carbide (SiC) layer, and outer
pyrocarbon (OPyC) layer. These layers act as a pressure vessel for
fission product gases as well as a barrier to the migration of other
fission products. The quality of the fuel can be characterized by the
number of particle failures that occur during reactor operation.
Fuel performance codes, such as Idaho National Laboratory’s PAR-
FUME [1], are needed to determine the failure probability of a pop-
ulation of fuel particles. Other performance codes are described in
Ref. [2].

The failure probability for a batch of TRISO-coated fuel particles
generally depends on statistical variations in a number of design
parameters and on variations in the strengths of the coating layers
among particles in the batch. The probability is traditionally calcu-
lated using the Monte Carlo method wherein a large number of
particles are statistically sampled to account for the variations. In
ll rights reserved.
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these calculations the design parameters are typically sampled
from Gaussian statistical distributions, while the coating layer
strengths are sampled from Weibull statistical distributions [3,4].
The parameters that can currently be varied statistically in the
PARFUME code include the thicknesses of the three coating layers,
densities of the pryocarbons, degree of anisotropy in the pyrocar-
bon layers (as measured by the Bacon anisotropy factor [BAF]),
irradiation temperature, the creep coefficient for the pyrocarbons,
kernel diameter, buffer thickness, Poisson’s ratio in creep for the
pyrocarbons, bond strength between the IPyC and SiC coating lay-
ers, and the degree of asphericity (as measured by aspect ratio) for
aspherical particles. This list can be modified as desired. Only
rarely would statistical variations in all of these parameters be con-
sidered in a single analysis.

A significant disadvantage of the Monte Carlo approach has
been that a low failure probability requires a large particle sample
to produce an accurate estimate of the probability. With the capa-
bilities contained in an integrated fuel performance modeling code
such as PARFUME, sampling a large number of particles to calcu-
late small failure probabilities can be a time consuming effort. A
further consideration is that failure probabilities may have to be
calculated for a multitude of potential failure mechanisms (such
as internal pressure loading, cracking of the IPyC, partial debonding
of the IPyC from the SiC, asphericity effects, the amoeba effect, and
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degradation of the SiC). Multi-dimensional failure mechanisms are
described in detail in Refs. [5–7]. These mechanisms complicate
the calculations to the point that an independent method is needed
to verify that the probabilities are determined accurately. There-
fore, an alternative approach to the Monte Carlo method has been
developed. In this approach, the failure probability for a particle
batch is formulated in terms of an integral and methods for evalu-
ating the integral have been developed as described below. Both
the Monte Carlo and numerical integration methods have been
implemented in the PARFUME code. The theory behind the PAR-
FUME code is explained in Ref. [8], which more thoroughly de-
scribes implementation of the integration method.

2. Failure probability for Gaussian distribution of strengths

Failure of a particle is assumed to occur when the maximum
stress r in the SiC layer exceeds the SiC strength l. Though the
strengths for the SiC layer in a fuel particle batch are generally as-
sumed to follow a Weibull statistical distribution, we will initially
assume the strength levels l to be distributed according to a
Gaussian distribution with a mean strength ls and a standard devi-
ation Ds. If the stress r is a function of a parameter vk, which is also
assumed to vary according to some statistical distribution, then the
stress in a particle can be expressed as follows:

r ¼ gðvkÞ ð1Þ

Assuming momentarily that the parameter vk is fixed for a batch
of particles, then the probability that the stress in a particle ex-
ceeds its strength is [9]:

Pf ðvkÞ ¼
Z gðvkÞ

�1

1ffiffiffiffiffiffiffi
2p
p

Ds

e�ðs�lsÞ
2=2D2

s ds ð2Þ

This is the failure probability associated with a specific value for
the parameter mk. Considering statistical variations in vk, if ai is the
fraction of particles within the batch having parameter vk equal to
vki, then the total failure probability for the batch is

Pf ¼ a1Pf ðvk1Þ þ a2Pf ðvk2Þ þ a3Pf ðvk3Þ þ . . . ð3Þ

This summation is converted to an integral by writing the ai as a
density function for the parameter vk:

Pf ¼
Z 1

�1
aðvkÞPf ðvkÞdvk ð4Þ

If the parameter vk is assumed to be distributed normally with a
mean value lk and a standard deviation Dk, then

Pf ¼
Z 1

�1

Z gðvkÞ

�1

1ffiffiffiffiffiffiffi
2p
p

Dk

e�ðvk�lkÞ
2=2D2

k
1ffiffiffiffiffiffiffi

2p
p

Ds

e�ðs�lsÞ
2=2D2

s dsdvk ð5Þ

The failure probability for this batch of particles is then deter-
mined by evaluating the integral above. Since Eq. (5) cannot be
integrated in closed form, the accuracy of the calculated failure
probability depends on the level of precision in the integration
performed.

The formulation above can be extended to situations where the
stress r is a function of several parameters that vary according to
some statistical distribution. Considering the case of a batch of par-
ticles where the stress is a function of two such parameters, vj and
vk:

r ¼ gðv j;vkÞ ð6Þ

The probability of failure associated with specific values vj and
vk for the two parameters is

Pf ðv j;vkÞ ¼
Z gðv j ;vkÞ

�1

1ffiffiffiffiffiffiffi
2p
p

Ds

e�ðs�lsÞ
2=2D2

s ds ð7Þ
If am is the fraction of particles having parameter vj equal to vjm,
and an is the fraction of particles having parameter vk equal to vkn,
then the total batch failure probability is

Pf ¼
X

m

X
n

amanPf ðv jm;vknÞ ð8Þ

Again, this is converted to an integral by writing am and an as
density functions for the parameters vj and vk. Then,

Pf ¼
Z 1

�1

Z 1

�1
aðv jÞaðvkÞPf ðv j;vkÞdvk dv j ð9Þ

Assuming that the parameters vj and vk are both normally dis-
tributed, then the failure probability becomes

Pf ¼
Z 1

�1

Z 1

�1

Z gðv j ;vkÞ

�1

1ffiffiffiffiffiffiffi
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Dj

e�ðv j�ljÞ
2=2D2
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A pattern is established in comparing Eqs. (5) and (10). Each
parameter considered adds a density function to the integrand
and increases the level of integration by one. Therefore, any num-
ber of parameters can be accommodated in this formulation.

The limits of integration in the mathematical expression above
extend to infinity. In reality, of course, these parameters do not
physically cover this range. It is found that an accurate value for
the integral can be attained by integrating over a range of four
standard deviations to each side of the mean value for each param-
eter. Outside this range, the density functions are so small that
contributions to the integral become negligible. An integral for n
parameters then appears as follows:

Pf ¼ A
Z ljþ4Dj

lj�4Dj

Z lkþ4Dk

lk�4Dk

. . .

Z gðv j ;vk :::Þ

ls�4Ds

� e�ðv j�ljÞ
2=2D2

j �ðvk�lkÞ
2=2D2

k ...�ðs�lsÞ
2=2D2

s ds . . . dvk dv j ð11Þ

where

A ¼ 1ffiffiffiffiffiffiffi
2p
p nþ1

DjDk . . . Ds

ð12Þ
3. Failure probability for Weibull variation of strengths

Because of the brittle nature of the graphitic materials in fuel
particles, the material strengths generally follow a Weibull distri-
bution rather than the Gaussian distribution assumed above
[3,4]. In the Weibull theory, the probability of failure for the parti-
cles in a batch is [10]:

Pf ¼ 1� e�
rmax
rmsð Þm ð13Þ

where rmax = maximum principal stress in the SiC layer, rms = mean
strength for the SiC, or the stress at which 63.2% of the particles fail
and m = Weibull modulus for the SiC.

We now consider the case where the maximum stress is a func-
tion of a parameter (mk) that varies with some statistical
distribution.

rmax ¼ gðvkÞ ð14Þ
The failure probability associated with a specific value mk for

this parameter is

Pf ðvkÞ ¼ 1� e�
gðvk Þ
rms

� �m

ð15Þ

The total failure probability for a batch of particles is

Pf ¼
Z 1

�1
aðvkÞPf ðvkÞdvk ð16Þ

where a(mk) is a density function for the parameter mk.
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In the situation where the stress is a function of multiple
parameters having normal statistical distributions, the total failure
probability becomes

Pf ¼ B
Z ljþ4Dj

lj�4Dj

Z lkþ4Dk

lk�4Dk

. . . e�ðv j�ljÞ
2=2D2

j �ðvk�lkÞ
2=2D2

k ...

� 1� e�
gðvj ;vk ;:::Þ

rms

� �m� �
dv1 . . . dvk dv j ð17Þ

where

B ¼ 1ffiffiffiffiffiffiffi
2p
p n

DjDk . . . D1

According to Ref. [11], an integral of this form gives the ‘‘expec-
tation value” for the function in brackets, i.e. the failure probability.

In addition to the use of a Weibull distribution for the coating
layer strengths, another exception to the use of a Gaussian distri-
bution to characterize the statistical variation in a parameter is
in the temperature distribution among particles. The temperature
of a particle in a fuel pebble, for example, is dependent on its radial
position in the pebble. The distribution used to represent the radial
density of particles in a pebble is 3r2/R3, where r is any radial loca-
tion in the pebble and R is the outside radius of the fueled region of
the pebble. The corresponding radial density of particles in a cylin-
der is 2r/R2. When integrated over the range of 0–R, these densities
sum to 1.

Determining the failure probability with Monte Carlo statistical
sampling of the integration variables is a means of evaluating the
integral in Eq. (17). The other approach exercised in PARFUME is
a direct numerical integration where the integration is typically
performed at eleven Gaussian quadrature points over the range
of li � 4Di to li + 4Di for each parameter mi. An odd number of
points is used so that an integration is performed at the mean value
li for each parameter, which is essential to achieving maximum
accuracy in the calculation. An exception to the use of Gaussian
quadrature points in PARFUME is in the integration of particle ra-
dial position over the radius of a sphere (pebble) or cylinder (pris-
matic block). These integrations are performed at equal intervals
over the radius (dependent on user specified nodalization).
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Fig. 1. Failure probability density obtained from numerical integration.
Fig. 1 plots a representative failure probability density obtained
from numerical integration when the IPyC thickness and BAF were
assumed to vary according to a Gaussian statistical distribution.
The largest concentration of particles occurs around the mean val-
ues of 1.054 and 40 for the IPyC BAF and IPyC thickness, respec-
tively. The peak of the failure probability density is shifted
somewhat from the point where these mean values intersect in
the BAF/thickness plane.
4. Implementation of the integration method in PARFUME

In principle, determining the failure probability by numerically
integrating Eq. (17) should produce the same failure probability as
that calculated by the Monte Carlo method (discounting numerical
error). This method is implemented in PARFUME by integrating
over a parameter space consisting of those parameters m that exhi-
bit a statistical variation about a mean value. For each differential
volume element (in parameter space), PARFUME solves incremen-
tally (through time) for stresses in a particle from the beginning to
the end of irradiation. The particle analyzed has parameters that
correspond to that differential volume element. It then determines
a failure probability for each of several failure modes (such as IPyC
cracking, partial debonding, internal pressure, and the amoeba ef-
fect) at the end of each time increment of the stress solution. Thin-
ning of the SiC due to corrosion is an additional failure mechanism
that is currently under development. If the failure probability at
the end of a time increment exceeds the accumulated probability
at the beginning of the increment, the cumulative probability for
the volume element is incremented accordingly.

To determine the probability that particles will fail due to IPyC
cracking, the code first determines the probability that cracking of
the IPyC will occur. It then determines the probability that the SiC
layer of the particle will fail due to the presence of the IPyC crack.
The product of these probabilities then gives a probability for par-
ticle failure due to IPyC cracking. The probability that particles will
fail due to partial debonding of the IPyC layer is likewise deter-
mined by first calculating the probability that debonding occurs,
then determining the probability that a debonded particle will fail.
A complication in these calculations is that there are times when
IPyC cracking or IPyC debonding would occur in the same particle,
introducing overlap in the probabilities of these two mechanisms.
To develop an appropriate split between the probabilities of IPyC
cracking and IPyC debonding, the code uses the process described
as follows. It determines maximum values for the IPyC hoop stress
and the radial stress at the interface between IPyC and SiC layers
occurring throughout irradiation. It uses the maximum IPyC hoop
stress in Eq. (13) to determine the probability (within a differential
volume element) that the IPyC layer would crack, where rmax, rms,
and m are now maximum stress, mean strength, and Weibull
modulus for the IPyC layer. Because the bond strength is currently
treated in PARFUME as having a normal statistical distribution, the
code uses Eq. (11) to determine the probability that the IPyC layer
would debond from the SiC, where g is now the maximum radial
stress at the interface and ls is the mean bond strength.

Having determined probabilities that a particle within the dif-
ferential volume element would crack (Pa) or debond (Pb), the code
now determines what fraction of particles within the volume will
crack (a), debond (b), or do neither (c). The sum of the fractions
a, b, and c must be 1:

aþ bþ c ¼ 1 ð18Þ

There may be some particles that mathematically could both
crack and debond. PARFUME currently allows a particle to do one
or the other, but not both. Thus, the fraction of particles that crack
is something less than the probability of cracking if the probability
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of debonding is non-zero (and vice versa). If the probability of
cracking is n times the probability of debonding, then cracking will
occur n times as often. A second condition, then, is that the ratio
between the fraction of particles that crack and the fraction of par-
ticles that debond is equal to the ratio between the probability of
cracking and the probability of debonding:

a ¼ Pa

Pb
b ð19Þ

A third condition comes from recognizing that the probability
that a particle neither cracks nor debonds (Pc) is

Pc ¼ ð1� PaÞð1� PbÞ ð20Þ

A particle that would crack may also be a particle that would
debond. However, a particle that would do neither has no such
overlap. Hence

c ¼ Pc ð21Þ

Substituting Eqs. (19)–(21) into Eq. (18) gives

b ¼ Pb 1� PaPb

Pa þ Pb

� �
ð22Þ

The fractions a and b are calculated above as if the values for the
quantities are developed in a single time step. Since PARFUME
solves through irradiation in time increments, the process de-
scribed above has to be modified accordingly. Within a time incre-
ment, the probabilities for cracking and debonding increase
incrementally by DPa and DPb, respectively, resulting in corre-
sponding increases to fractions a and b of Da and Db. Then Eqs.
(18) and (19) are modified as follows:

aþ Daþ bþ Dbþ c ¼ 1 ð23Þ

Da ¼ DPa

DPb
Db ð24Þ

where a and b are the crack and debond fractions at the beginning
of the increment. The quantity c is the fraction of particles that have
neither cracked nor debonded at the end of the time increment,
meaning that its value has decreased by Da + Db during the incre-
ment. Eqs. (20) and (21) remain unchanged, and the probabilities
in these equations are those occurring at the end of the time incre-
ment. Substituting Eqs. (20), (21), and (24) into Eq. (23) results in:

Db ¼ DPbðPa þ Pb � PaPb � a� bÞ
DPa þ DPb

ð25Þ

The incremental fractions Da and Db are then added to a and b,
respectively, to produce new failure fractions at the end of the
increment.

Once the fractions a, b, and c are determined for the volume ele-
ment, the program computes a differential failure probability (of
the SiC) for each of three failure mechanisms, i.e., IPyC cracking,
IPyC debonding, and internal gas pressure loading. To do this it first
calculates the maximum stress in the SiC layer for each of these
mechanisms in a particle corresponding to the volume element.
For IPyC cracking or debonding, this is done using the statistical
methodology described in Ref. [12]. For internal pressure loading,
the maximum stress in the SiC layer for a spherical particle is cal-
culated using the solution of Ref. [13]. If asphericity in the particles
is considered, then the maximum SiC stress due to internal pres-
sure is calculated using methodology described in Ref. [6]. Asphe-
ricity can be treated as a statistical parameter, where the aspect
ratio becomes one of the parameters of Eq. (17).

For each of the three failure mechanisms, the program then ap-
plies the maximum SiC stress in the integrand of Eq. (17) to calcu-
late a differential failure probability. It applies the factors a and b
(corresponding to the end of the time increment) to the probabil-
ities of SiC failure due to IPyC cracking and debonding, respec-
tively. It then applies the following factor to the probability of
SiC failure due to internal pressure loading:

c þ ae�ð
rmax a
rmsa

Þm þ be�ð
rmax b
rmsb

Þm ð26Þ

where rmax a = maximum principal stress in the SiC layer of a parti-
cle having a cracked IPyC, rmsa = mean strength for the SiC layer of a
particle having a cracked IPyC, rmax b = maximum principal stress in
the SiC layer of a particle having a cracked IPyC, rmsb = mean
strength for the SiC layer of a particle having a cracked IPyC and
m = Weibull modulus for the SiC.

The exponential in the second term of Eq. (26) is the probability
that the SiC layers among cracked particles have survived potential
failure due to the crack (assuming a Weibull strength distribution
for the SiC layer). The second term itself then represents that frac-
tion of particles that incurred an IPyC crack but did not experience
failure of the SiC due to the presence of the crack. These particles
that have survived are thus allowed the possibility to fail later
due to internal pressure loading. The third term treats particles
that have debonded in like manner.

In executing the integration method, PARFUME accumulates a
failure probability for each failure mechanism considered (IPyC
cracking, failure of the SiC due to IPyC cracking, etc.). To do this,
the incremental failure probability for each time increment in
the analysis of each particle is weighted by the appropriate proba-
bility density functions for the particle, and is then added to a
cumulative probability for that time increment. At the end of the
integration, then, each time increment has a cumulative failure
probability for that failure mechanism. The cumulative failure
probabilities for all increments up to a time ti are then summed
to produce a total failure probability at time ti.

If failure due to the amoeba effect is found to occur in a differ-
ential volume element during any time increment, the probability
of SiC failure jumps to 1.0 for that element. Therefore, no further
consideration of SiC failure is required for that element beyond
that time increment.

5. Fast integration method

The time required to execute the probability calculation of Eq.
(17) depends on how many parameters are given a statistical var-
iation. For example, the execution time is just a fraction of a second
when only one parameter is statistically varied, regardless of the
magnitude of the failure probability. The computation time can,
though, become inordinately large when a large number of param-
eters are considered. Therefore, an approximation is developed be-
low that can substantially reduce the time required to perform the
integration with only a minimal loss of accuracy.

Considering for the moment statistical variations in four param-
eters, Eq. (17) can be expressed as the following integral:

I1;2;3;4 ¼
1ffiffiffiffiffiffiffi

2p
p 4

D1D2D3D4

Z 4D4

�4D4

Z 4D3

�4D3

Z 4D2

�4D2

�
Z 4D1

�4D1

e�Dm2
1=2D2�Dm2

2=2D2�Dm2
3=2D3�Dm2

4=2D2

� 1� e�
gðDv1 ;Dv2 ;Dm3 ;Dm4Þ

rms

� �m
� �

dDv1 dDv2 dDm3 dDm4 ð27Þ

or in the basic form

I1;2;3;4 ¼
Z 4D4

�4D4

Z 4D3

�4D3

Z 4D2

�4D2

�
Z 4D1

�4D1

f ðDm1;Dm2;Dm3;Dm4ÞdDm1 dDm2 dDm3 dDm4 ð28Þ
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where Dmi is the variation in parameter i from its mean value li.
Additionally, the subscript 1–4 on the integral I indicates that the
integral entails variations in the parameters 1–4.

The integrand f(Dm1, Dm2, Dm3, Dm4) can be expanded into a Tay-
lor series having the following form:

f ðDm1;Dm2;Dm3;Dm4Þ

¼ f ð0;0; 0;0Þ 1þ
X1
i¼1

X4

p¼1

aipDmi
p þ

X1
i¼1

X1
j¼1

X3

p¼1

X4

q¼2

bijpqDmi
pDmj

q

 

þ
X1
i¼1

X1
j¼1

X1
k¼1

X2

p¼1

X3

q¼2

X4

r¼3

cijkpqrDmi
pDmj

qDmk
r

þ
X1
i¼1

X1
j¼1

X1
k¼1

X1
l¼1

dijklDmi
1Dmj

2Dmk
3Dml

4

!
ðp < q < rÞ ð29Þ

The coefficients in this series (aip, bijpq, cijkpqr and dijkl) are com-
posed of derivatives of the function f with respect to the parame-
ters mi. The error that would be incurred in dropping some of the
summations in this series may be small, depending on the degree
of coupling between the parameters mi. The maximum stress
g(Dm1, Dm2, Dm3, Dm4) can similarly be expanded into a Taylor ser-
ies. A study of the stresses in the coating layers has revealed that g
can be well approximated by carrying only terms involving varia-
tions in two or fewer parameters. In this case, summations in the
series involving variations in three or more parameters can reason-
ably be neglected. Because the integrand f is strongly a function of
the stress g, it can be expected that summations in its series involv-
ing variations in three or more parameters can be neglected as
well.

Prior to eliminating these summations, the following relations
can be established from Eqs. (28) and (29):

I ¼ f ð0;0;0;0Þ ¼ 1� e�
gð0;0;0;0Þ

rmsð Þm ð30aÞ

I1 ¼
Z 4D1

�4D1

f ðDv1;0;0;0ÞdDv1
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1 1� e�

gðDv1 Þ
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dðDv1Þ

¼ I 1þ
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�4D1
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ai1Dmi
1dDm1

 !
ð30bÞ
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bij12Dmi
1Dmj

2dDm1dDm2 ð30cÞ

Substituting Eq. (29) into Eq. (28), neglecting all summations
involving more than two parametric variations, and utilizing the
relations of Eqs. (30a), (30b) and (30c), the failure probability inte-
gral becomes

I1;2;3;4 ffi I þ
X4

p¼1

Ip � 4I þ
X3

p¼1

X4

q¼2

ðIp;q � Ip � Iq þ IÞ ðp < qÞ ð31Þ

where only those parameters having a Dm that deviates from zero
are shown in subscripts. On simplification,

I1;2;3;4 ffi 3I � 2
X4

p¼1

Ip þ
X3

p¼1

X4

q¼2

Ip;q ðp < qÞ ð32Þ
For the more general case of N variables of integration, Eq. (31)
becomes

I1;2;...N ffi I þ
XN

p¼1

Ip � NI þ
XN�1

p¼1

XN

q¼2

ðIp;q � Ip � Iq þ IÞ ðp < qÞ ð33Þ

which is simplified to

I1;2;...N ffi
ðN � 2ÞðN � 1Þ

2
I � ðN � 2Þ

XN

p¼1

Ip þ
XN�1

p¼1

XN

q¼2

Ip;q ðp < qÞ

ð34Þ
This resolves the multiple integral (over N variables) into a

number of subintegrals that each requires integration over two
or fewer variables.

It is noted that this approximation equation could apply to any
multiple integration, not just the failure probability integral for
TRISO-coated fuel particles. The general equation for estimating
an N-dimension integral with integrals up to level k (where
k < N) can be similarly developed to give

I1;2;...N ffi
ð�1ÞkðN � 1Þ!
ðN � k� 1Þ!k!

I þ ð�1Þk�1ðN � 2Þ!
ðN � k� 1Þ!ðk� 1Þ!

XN

p¼1

Ip

þ ð�1Þk�2ðN � 3Þ!
ðN � k� 1Þ!ðk� 2Þ!

XN�1

p¼1

XN

q¼2

Ip;q þ � � �

þ
XN�kþ1

p¼1

XN�kþ2

q¼2

� � �
XN

z¼k

Ip;q;...z ðp < q < � � � < zÞ ð35Þ

The level k that may be needed in a particular case is dependent
upon the degree of coupling among the integration variables.
When the integration is carried out to an appropriate level k, the
estimate should be very accurate. For the failure probability inte-
gral of Eq. (17), a value of k = 2 has been sufficient.

The time required to perform the integration using Eq. (34) rel-
ative to the full integration can be measured in terms of the num-
ber of integration points required for each. It has been found that
the integrations for a fuel particle can generally be carried out to
a high degree of accuracy in PARFUME using eleven integration
points over the range of each statistically varying parameter.
The number of integration points n needed to perform the full
integration of Eq. (17), then, is

n ¼ 11N ð36Þ

Resolving the integral into subintegrals up to level two, as in Eq.
(34), reduces the number of integration points to

n ¼ 1þ Nð11Þ þ NðN � 1Þ
1ð2Þ ð11Þ2 ð37Þ

Based on these equations, PARFUME would execute a 2-level
integration in approximately 1/(4.67 � 106) the time required to
execute the full integration if 10 variables are considered.

The full integration method is executed in the code with a set of
nested DO loops, one for each statistically varying parameter. Each
parameter is cycled through its full range of values within its
respective loop. The two-level method is executed with two nested
loops. These loops execute subintegrals involving all possible com-
binations of parameters taken two at a time [the third term on the
right-hand side of Eq. (34)]. They are also used to execute subinte-
grals involving variations in one or no parameters [the second and
first terms of Eq. (34), respectively]. The two-level approach is re-
ferred to as the ‘‘fast integration” approach.

6. An improved means of implementing the Monte Carlo
method

The Monte Carlo method has traditionally been executed by
statistically sampling the coating layer strengths along with the
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integration variables of Eq. (17). With this approach, the integral of
Eq. (17) is actually evaluated in the following modified form:

Pf ¼ B
Z ljþ4Dj

lj�4Dj

Z lkþ4Dk

lk�4Dk

� � �
Z gðmj ;mk ;...Þ

0
e�ðv j�ljÞ

2=2D2
j �ðvk�lkÞ

2=2D2
k ...

� m
ðrmsÞm

sm�1e�
s

rmsð Þ
m

� �
ds . . . dvk dv j ð38Þ

where the expression for failure probability [within brackets on the
right-hand side of Eq. (17)] has been differentiated with respect to
the stress s and integrated from 0 to the stress level g(mj, mk,. . .). As
with Eq. (11), the stress s within the integral of Eq. (38) is the
strength variable for the coating layer, except that the strength
has a Weibull distribution rather than a Gaussian distribution. In
exercising the Monte Carlo method according to Eq. (38), the calcu-
lated stress in the coating layer is compared to the sampled
strength value to determine whether a coating layer fails. As noted
above, though, a disadvantage to this approach is that a large statis-
tical sample is required to capture a small failure probability. If the
Monte Carlo method is executed instead according to Eq. (17), then
statistical sampling on strength is not needed since it is not an inte-
gration variable. Consequently, the size of the sample can be greatly
reduced in cases where the failure probability is low. Eq. (17) is also
more desirable for the numerical integration approaches since it
does not require integration over strength variables. A further
advantage of the use of Eq. (17) is that a closed-form integration
on the strength variables is more exacting than the use of discrete
strength values. Therefore, the desired approach to calculating fail-
ure probabilities, whether using the Monte Carlo or numerical inte-
gration approaches, is to use Eq. (17) implemented according to the
method of Section 4. It is noted that the stress function g(mj, mk,. . .)
must be continuous (integrable) across the full range (generally
�4D to 4D) of all parameters vi through the time over which the
analysis is conducted. When using the Monte Carlo approach in
the method of Section 4, the parameters for each particle analyzed
are selected by statistical sampling. There is, though, no statistical
sampling of the coating layer strengths. Using Eq. (17) to determine
failure probabilities with the fast, full, and Monte Carlo integration
approaches is demonstrated in two sample cases below.
Table 1
Input parameters for failure probability calculations.

Parameter Units

Kernel diameter lm
Buffer thickness lm
IPyC thickness lm
SiC thickness lm
OPyC thickness lm
IPyC density Mg/m3

OPyC density Mg/m3

IPyC BAF
OPyC BAF
Weibull characteristic strength, IPyC MPa lm3/9.5

Weibull modulus, IPyC
Weibull characteristic strength, SiC MPa lm3/8.02

Weibull modulus, SiC
Pyrocarbon Poisson’s ratio in creep
Oxygen to uranium ratio Atom ratio
Carbon to uranium ratio Atom ratio
End-of-life fluence 1025 n/m2

E > 0.18 MeV
Ambient pressure MPa
Boundary temperature during irradiation K

IPyC/SiC bond strength MPa
Burnup % FIMA

a The irradiation conditions of Case 2 were set to be more severe than those of Case 1
7. Application to sample cases

The integration methods developed herein for calculating fuel
particle failure probabilities were applied to two cases of particles
in a fuel pebble to demonstrate that they produce results that
agree with results from the Monte Carlo approach. The input
parameters considered in these cases are summarized in Table 1.
These constitute only hypothetical cases intended to test the meth-
odology, not to represent actual fuel particle batches. In these
cases, a period of irradiation is followed by a post-irradiation hea-
tup with boundary temperatures as shown in Table 2. The post-
irradiation temperatures varied significantly over a very short
time. The basic differences between the cases are that Case 2 has
a higher fluence, irradiation temperature, and burnup than Case 1.

The strengths of the IPyC and SiC layers were treated with Wei-
bull statistical distributions having the characteristic strengths and
moduli shown in the table. (Ref. [10] gives a description of these
parameters.) The characteristic strengths shown were used to
determine mean strengths for the IPyC and SiC layers that corre-
sponded to stress distributions resulting from internal pressure
loading. (Ref. [12] gives a description of the method used to deter-
mine the mean strength for a stress distribution.) In Case 1, the
mean strengths for stress distributions in the SiC that resulted from
a cracked IPyC and from a debonded SiC were arbitrarily set to val-
ues of 1544 MPa and 1000 MPa, respectively. In Case 2, these mean
strength values were arbitrarily set to 544 and 500 MPa,
respectively.

As shown in Table 1, five input parameters were given statisti-
cal variations in these analyses, i.e. IPyC thickness, SiC thickness,
IPyC BAF, IPyC/SiC bond strength, and particle temperature. The
first four of these parameters were treated with a Gaussian distri-
bution having the mean values and standard deviations shown in
the table. A time-dependent global temperature distribution was
calculated across the radius of the pebble. The temperatures of
the particles, then, varied with radial position in the pebble. The
distribution used to represent the radial density of particles in
the pebble was 3r2/R3, where r is the radial position of a particle
and R is the outside radius of the fueled region of the pebble.

Three particle failure mechanisms were considered in these cal-
culations, i.e. failure of the SiC due to (1) internal pressure loading,
Mean value Standard deviation

Case 1 Case 2a

497 Same
94 Same
41 Same 4
36 Same 1.7
40 Same
1.90 Same
1.88 Same
1.053 Same 0.01
1.019 Same
1316.7 Same
9.5 Same
9640 Same
8.02 Same
0.5 Same
2 Same
0 Same
5.00 6.82

0.1 Same
1113.2 1348.0 Distributed according to the

geometry of a pebble
30 32 4
11.1 13.9

.



Table 2
Post-irradiation boundary temperatures.

Case 1 Case 2

Fluence (1025 n/m2,
E > 0.18 MeV)

Temperature
(K)

Fluence (1025 n/m2,
E > 0.18 MeV)

Temperature
(K)

5.0 1113.2 6.82 1348
5.0+ 999.667 6.82+ 1089.67
5.0+ 786.333 6.82+ 831.34
5.0+ 573 6.82+ 573
5.0+ 573 6.82+ 573
5.0+ 823 6.82+ 823
5.0+ 1073 6.82+ 1073
5.0+ 1323 6.82+ 1323
5.0+ 1323 6.82+ 1323
5.0+ 1523 6.82+ 1523
5.0+ 1523 6.82+ 1523
5.0+ 1698 6.82+ 1698
5.0+ 1873 6.82+ 1873
5.0+ 1873 6.82+ 1873
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(2) cracking of the IPyC layer, and (3) partial debonding of the IPyC
from the SiC. Though no asphericity effects were considered, pres-
sure vessel failures occur because of the significant internal pres-
sures that occur during heatup following irradiation. The failure
probabilities in all cases were calculated using the approaches de-
Table 3
Results for Case 1, two-variable case.

Variables: temperature, bond strength

Probability of Integration method

Fast

IPyC cracking 0.2125
IPyC debonding 0.7820
SiC failure due to IPyC cracking 5.050 � 10�8

SiC failure due to IPyC debonding 8.003 � 10�9

SiC failure due to internal pressure 7.602 � 10�6

SiC failure, total 7.661 � 10�6

Execution time 4 s

Table 4
Results for Case 1, five-variable case.

Variables: temperature, bond strength, IPyC BAF, IPyC thickness, SiC thickness

Probability of Integration method

Fast

IPyC cracking 0.2058
IPyC debonding 0.7621
SiC failure due to IPyC cracking 7.110 � 10�8

SiC failure due to IPyC debonding 1.007 � 10�8

SiC failure due to internal pressure 1.883 � 10�5

SiC failure, total 1.891 � 10�5

Execution time 15 s

Table 5
Results for Case 2, two-variable case.

Variables: temperature, bond strength

Probability of Integration method

Fast Full

IPyC cracking 0.01693 0.01693
IPyC debonding 0.07574 0.07574
SiC failure due to IPyC cracking 1.799 � 10�5 1.799 � 10�5

SiC failure due to IPyC debonding 5.502 � 10�5 5.502 � 10�5

SiC failure due to internal pressure 0.06202 0.06202
SiC failure, total 0.06209 0.06209
scribed in Sections 3 through 6, which entail implementing Eq. (17)
as described in Section 4.

Results for Case 1, where only two of the five input parameters
(i.e., temperature and bond strength) were varied statistically, are
presented in Table 3. In these calculations, the other three param-
eters were set to their mean values. The magnitudes of the calcu-
lated probabilities are not as important as how well the results
compare for the three integration methods. Because there are only
two integration variables, there is no distinction between the fast
and full integration approaches and their results are identical.
The results for the fast and full methods compare very closely with
those from the Monte Carlo approach where 100,000 particles
were sampled. The Monte Carlo method was able to capture very
small failure probabilities in this case with only a 100,000-particle
sample because the IPyC and SiC strengths were not treated as
integration variables. Had these been treated as integration vari-
ables, the sample size required to capture these small probabilities
would have been several orders of magnitude larger. The execution
time for the fast and full integration solutions (which are identical
in this case) was about 4 s, while that of the Monte Carlo solution
was about 13 min.

Results for Case 1, where all five input parameters were varied
statistically, are presented in Table 4. The results for the fast and
full integration approaches are identical to the four digits shown,
Full Monte Carlo (100,000 particles)

0.2125 0.2125
0.7820 0.7820
5.050 � 10�8 5.037 � 10�8

8.003 � 10�9 7.986 � 10�9

7.602 � 10�6 7.592 � 10�6

7.661 � 10�6 7.650 � 10�6

4 s 13 min

Full Monte Carlo (100,000 particles)

0.2058 0.2059
0.7621 0.7621
7.110 � 10�8 7.062 � 10�8

1.007 � 10�8 1.001 � 10�8

1.883 � 10�5 1.890 � 10�5

1.891 � 10�5 1.898 � 10�5

28.5 min 13 min

Monte Carlo (100,000 particles) Monte Carlo (1,000,000 particles)

0.01689 0.01690
0.07548 0.07553
1.787 � 10�5 1.788 � 10�5

5.456 � 10�5 5.462 � 10�5

0.06209 0.06204
0.06216 0.06212



Table 6
Results for Case 2, five-variable case.

Variables: temperature, bond strength, IPyC BAF, IPyC thickness, SiC thickness

Probability of Integration method

Fast Full Monte Carlo (100,000 particles) Monte Carlo (1,000,000 particles)

IPyC cracking 0.01748 0.01748 0.01741 0.01745
IPyC debonding 0.11870 0.11877 0.11802 0.11872
SiC failure due to IPyC cracking 4.538 � 10�5 4.577 � 10�5 4.503 � 10�5 4.571 � 10�5

SiC failure due to IPyC debonding 1.654 � 10�4 1.667 � 10�4 1.640 � 10�4 1.664 � 10�4

SiC failure due to internal pressure 0.06593 0.06593 0.06599 0.06589
SiC failure, total 0.06614 0.06614 0.06620 0.06610
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indicating that the fast integration approximation gave a very good
estimate of the failure probability. Again, the results also agree
well with those from the Monte Carlo approach. Because of the in-
crease in integration variables, the execution time for the fast inte-
gration method increased to 15 s, while that of the full integration
method increased to 28.5 min. The execution time for the Monte
Carlo solution remained at 13 min. These execution times demon-
strate the advantage of the fast integration method.

Tables 5 and 6 show corresponding results for Case 2. In this
case, failure probabilities were higher due to more severe input
conditions. Again, the calculated failure probabilities among the
three integration methods agree closely. Results also show that
increasing the Monte Carlo sample size from 100,000 to
1,000,000 particles further improves this agreement. The execution
times for Case 2 were similar to those of Case 1. The execution time
for a 1,000,000-particle Monte Carlo sample is about 10 times that
of a 100,000-particle sample.

8. Conclusions

An alternative approach to the traditional Monte Carlo method
has been developed for calculating failure probabilities for TRISO-
coated fuel particles in the PARFUME fuel performance modeling
code. In this approach, the failure probability is formulated in
terms of an integral. The integral can be evaluated with either
the Monte Carlo method or a direct numerical integration over
the range of variation of all statistically varying parameters that
characterize a batch of particles. This numerical integration can
be much faster than the Monte Carlo approach, and provides an
independent means of verifying that failure probabilities are calcu-
lated correctly in a comprehensive performance code.

Numerical integration can require long execution times when a
large number of statistically varying parameters are considered in
the failure probability calculation. Therefore, an approximation to
full integration has been developed that involves subintegrals hav-
ing no more than two integration variables. This approach, referred
to as the fast integration approach, can greatly reduce the execu-
tion times required to calculate failure probabilities with only a
minimal loss of accuracy.

In sample cases analyzed, both the fast and full integration ap-
proaches produced results that are in close agreement with the
Monte Carlo approach. It was also shown that the fast integration
method can save substantial computational time relative to the full
integration and Monte Carlo approaches, which is a strong advan-
tage of this method.

A modification to the traditional Monte Carlo method can
greatly reduce the required particle sample size when calculating
a small failure probability. This modification entails treating a coat-
ing layer strength as a Weibull statistical parameter but not as an
integration variable. Using this approach in the sample calcula-
tions, the Monte Carlo results compared very well with results
from the numerical integration methods.
All three integration methods have been incorporated into the
PARFUME code.
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